Managing Change in Software Development
Through Process Programming

Stanley M. Sutton Jr., Dennis Heimbigner, Leon J. Osterweil

CU-CS-531-91 June 1991

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUN 1991 2. REPORT TYPE 00-06-1991 to 00-06-1991
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Managing Change in Softwar e Development Through Process £b. GRANT NUMBER

Programming
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 32
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Managing Change in Software Development through Process
Programming?

Stanley M. Sutton, Jr.2 Dennis Heimbigner Leon J. Osterweil®

Department of Computer Science
University of Colorado
Boulder, CO 80309-0430

CU-CS-531-91
June, 1991

Abstract

Change is pervasive during software development. Change management can be facilitated by software-process
programming, which formalizes software products and processes in software-process programs. Toward this end,
process-programming languages (PPLs) should include constructs that address specific change-management
problems. These include lack of explicit representation for relationships, weak or inflexible constraints on objects
and relationships, visibility of implementations, lack of formal representation of processes, and dependence on
manual practices.

APPL/A is a prototype PPL that addresses these problems. APPL/A is an extension to Ada. APPL/A includes
abstract, persistent relations with programmable implementations, relation attributes that may be composite and
derived, triggers that react to relation operations, optionally-enforcible predicates on relations, and five composite
statements that provide flexible transaction-related capabilities.

Relations enable relationships to be represented explicitly and derivation dependencies to be maintained
automatically. Relation bodies may implement alternative storage and computation strategies without affecting
users of relation specifications. Triggers can automatically propagate data, invoke tools, and perform other
change-management tasks. Predicates and the transaction-related statements can be used to support change
management in the face of concurrent processes and evolving standards of consistency. Together, these features
mitigate many of the problems that complicate change management in software development.

'Submitted to ACM Transactions on Software Engineering and Methodology.
? Author to whom correspondence should be addressed. Telephone: (303) 492-7906; email: sutton@cs.colorado.edu.
*Department of Information and Computer Science, University of California, Irvine, CA 92717

1 Introduction

Change is pervasive during software development. The
components of a software product change: require-
ments, design, code, test cases, and so on are created,
derived, debugged, and modified. The development pro-
cess can change: A new phase may be added (e.g., pro-
totyping), or an existing phase may be revised (e.g.,
providing more stringent testing). The supporting en-
vironment can also change: new tools may be added,
and major components such as the underlying storage
system may be replaced. Often change management is
relegated to the maintenance phase of software develop-
ment, but in practice “maintenance” (as a synonym for
managing change) occurs throughout the software life
cycle [16].

One major difficulty in managing change is in de-
tecting and propagating the effects of a change to other
components or aspects of the environment. A change
to one object often requires changes to other objects
that are derived from it or that must be kept consistent
with it, and changes to those objects must be propa-
gated in turn. A change in the development process
must be implemented consistently and correctly in the
face of existing practices, tools, and products. A change
to parts of an environment can force adaptations in pro-
cesses and other parts, with further potential for errors
and inconsistencies in these areas.

In a process-programming environment, the pro-
cess program serves as a focal point and integration
mechanism for development activities and their sup-
porting technologies. Process programs are encodings of
software processes in formal process-programming lan-
guages [27]. Examples of environments which are in-
tended to support process programming or which are
driven by process programs include Arcadia [44], E-
L [8, 9], ASPECT [22], Melmac [14], Oikos [2], and
the software factory system described in [23]. Software-
process programming has the potential to make the
change-management problem tractable by formalizing
the structure of software products and the processes by
which they are constructed and maintained. By mak-
ing this structure explicit, a process program can en-
able the tracking of changes. Moreover, it offers the
possibility that the process of change propagation can
be automated. With respect to change management,
process programming is somewhat similar to software
configuration management [15, 10, 18]. However, pro-
cess programming languages are intended to represent
a wider range of objects and processes than are conven-
tional configuration-management systems.

If the potential of software-process programming
1s to be realized we must develop software-process pro-
gramming languages with appropriate constructs and
capabilities. Requirements for software-process pro-
gramming languages (PPLs) are difficult to determine a

priori. It seems reasonable to assume that PPLs must
subsume the capabilities of conventional programming
languages. However, we also expect that PPLs will
include extensions and specializations that reflect the
distinctive aspects of software processes and products.
These should include elements relevant to change man-
agement. Given such a PPL, it should be possible to
write process programs in which change is managed in-
tegrally and effectively.

In this paper we argue that process program-
ming can indeed provide the kinds of support for
change management suggested above. We first describe
APPL/A [41], a prototype PPL based on Ada [45]. AP-
PL/A is one part of the process-programming research
taking place in the Arcadia project [44]. APPL/A pro-
vides basic constructs and capabilities that can be ap-
plied in various ways to support change management in
process programs. We then present an extended exam-
ple of an evolving process program that illustrates fea-
tures of APPL/A and shows how change can be repre-
sented and managed in the context of process programs
and process programming.

The remainder of paper is organized as follows. Sec-
tion 2 presents a scenario that illustrates several com-
mon kinds of change in a software environment. On the
basis of this scenario we draw some conclusions about
what makes change management difficult and recom-
mend language capabilities to make it easier. Section 3
provides an overview of the APPL/A programming lan-
guage and discusses how features in the language pro-
vide support for change management. Section 4 pro-
vides an extended example. This example shows how
change can be managed within an APPL/A process pro-
gram and also shows how change to the process can be
implemented through change to the program. The pa-
per concludes with a discussion of related work and a
summary of the status of APPL/A research.

2 A Scenario of Change

Many changes in software environments can be classified
into three categories:

e Changes to objects in the environment

e Changes to processes supported by the environ-
ment

e Changes to the environment itself, including tools,
support systems, and hardware

The following scenarios illustrate changes of these kinds
and the resulting problems. The examples have been
kept simple, but the problems they illustrate are never-
theless fundamental and widespread in software devel-
opment.

The hypothetical system in which the scenarios are
set is a simple development environment consisting of
several tools in a UNIX-like operating system. The ini-
tial tools include a compiler, a loader, and a dataflow
analyzer capable of detecting anomalies such as unini-
tialized variables, unused variables, etc. [26, 25].

The development process is informal. Programmers
write source code, compile this to object code, link ob-
ject code to executable code, then test the resulting ex-
ecutable code for bugs. If bugs are found the source
code is revised and the process repeated. The dataflow
analyzer may be used occasionally during the writing of
source code (in an attempt to avoid errors) or when de-
bugging (in an attempt to identify the source of errors).

This scenario is, of course, simplistic. ~Many
projects would use tools such as Make [15] or SCCS [32]
to help manage changes to code. Such tools help to
manage certain kinds of change but not others; for ex-
ample, they typically rely on a fixed storage system,
they focus on derivation relationships, they use a fixed
evaluation and caching strategy, and they provide lim-
ited inferencing capabilities. As we hope to show in
this scenario and in the example of Section 4, effective
change management demands on more general and flex-
ible capabilities.

2.1 Changes to Objects

The normal course of development in this environment
involves repeated additions, updates, and deletions of
source modules. Suppose a programmer adds a new
source module. She or he must then determine how to
proceed. There are few constraints on the process. The
programmer may first invoke either the dataflow ana-
lyzer or compiler; the use of either may or may not be
conditioned on the results of the other. The dataflow an-
alyzer may be ignored altogether, perhaps because the
programmer does not care to use it or is simply unaware
of it. Once a plan for tool invocation is determined it
must be carried out manually. For example, the pro-
grammer may apply the dataflow analyzer to the source
code, evaluate the results of the analysis, and then ap-
ply the compiler if the analysis is acceptable. Note that
both the compiler and the dataflow analyzer create new
objects whose types are distinct from the type of the
source code and that the application of these tools cre-
ates an implicit dependency relationship between the
source code and the new objects.

The programmer must also iterate this process for
new objects derived from the source code. It is neces-
sary to check whether a compilation is successful and,
if so, link the resulting object module into the exe-
cutable modules to which it belongs. The effects of
these changes also need to be propagated further, for
example, to the rederivation of test results. In a more
realistic situation there might be still more tools that

apply to any new derived object.

A similar situation occurs if an existing source mod-
ule is updated. The applicable tools must be identified
and invoked, and the resulting changes to derived ob-
jects must be propagated. In this case, however, the
programmer is also responsible for identifying and re-
moving previous versions of various kinds of objects (ei-
ther deleting or archiving them) and for maintaining
the consistency of system configurations that combine
various versions of various modules.

The problems indicated above may arise for an indi-
vidual programmer; these problems are compounded for
teams of programmers. Access to and updates of objects
may not be coordinated. For example, two programmers
may separately edit the same source-code module at the
same time, and one may overwrite the other’s changes.
Similarly, one programmer may attempt to recompile a
module that is is being edited by another, or to relink an
executable system where object modules are out-of-date
because of changes made by others. Different modules
or systems may be developed by different methods. For
example, one programmer may rely on dataflow anal-
ysis, while another ignores it. And different program-
mers may handle out-dated objects in different ways.
One may save out-dated versions, while another simply
overwrites them. Thus the problems associated with in-
dividual programmers are multiplied, and new problems
arise from the interactions of teams of programmers.

2.2 Changes to Processes

The processes by which software is developed are sub-
ject to change for many reasons. For example, suppose
that the project manager institutes a policy requiring
that all source modules must meet certain criteria with
respect to data flow before they can be compiled. This
implies that the dataflow analyzer and compiler should
be applied to the source modules in sequence and that
the application of the compiler is conditional on the re-
sults of the analysis. In order to implement this policy,
programmers must be aware of the sequence and must
understand the conditions under which compilation is
allowed. They must also manually carry out the pre-
scribed process.

The availability of tools to implement a given de-
velopment process does not guarantee that it will be
carried out consistently or correctly, however. The like-
lihood that a process will be executed improperly in-
creases when the process is changed. In this scenario
the change of process is small and the resulting process
is simple. However, the potential remains for human
error at several points. This potential increases as the
complexity of the process and the magnitude of changes
increase. Additionally, as with problems arising from
changes to objects, the problems arising from changes
to process are made worse when teams of developers are

involved.

2.3 Change to the Environment

Environments can change in many ways, each with con-
sequent problems in change management. One common
change to software environments is the addition of a
new tool. For example, suppose the environment above
is extended to include a “word-count” tool similar to
the UNIX “wc¢” tool that counts the number of lines,
words, and characters in given files. In this scenario
the addition of the tool is simple because there are no
restrictions on how and when it can or should be used.

At first this new tool may not be widely or effec-
tively used. Programmers may not be aware of it, they
may not understand its function and relationship to ex-
isting tools and objects (admittedly simple in this case),
or they may not see any need for it. Eventually some
programmers may begin to use it occasionally, possibly
to measure their productivity or to obtain information
on the size of modules as an aid in managing program
complexity. Even so the tool may still not be used con-
sistently or comprehensively. Finally, the project man-
ager may promulgate a new policy that requires the size
of all source code modules to be within certain limits.
The word-count result for each source module is to be
saved along with the source modules for subsequent re-
view by management. This makes the role of the tool
more specific, but it requires programmers to change
their work habits. It also requires management of a
new type of object, the word-count results, which must
be stored and kept consistent with the source modules.

2.4 Causes and Consequences of
Change-Management Problems

The scenarios presented here illustrate only some kinds
of change. Many other kinds can occur: changes
to hardware, resources, and personnel, among others.
However, these scenarios are indicative of the kinds of
problems that can result from change. These problems
are attributable to several fundamental and interdepen-
dent causes:

¢ Manual management of change. Depending on
programmers for change management entails the
potential for human error. This may result in in-
complete, incorrect, inconsistent, and inefficient re-
sponse to changes.

e Lack of explicit representation for relation-
ships between objects. Without some such rep-
resentation, when one object is changed, it is diffi-
cult to identify which other objects are affected.
The direction and extent of change propagation
are difficult to determine, and changes may not

be propagated completely. (Note that inter-object
relationships include dependencies that are estab-
lished both by automated derivations and manual
activities.)

e Lack of information about constraints on ob-
jects and their relationships. Without some
form of constraints, and in the absence of specifi-
cations for object derivations, it may be difficult to
understand the consequences of any given change,
and therefore difficult to propagate the effects of
changes correctly and efficiently.

e Dependence of the development process on
implementation factors. Although the develop-
ment process in the abstract should be independent
of implementation factors, changes in supporting
systems can nevertheless force changes in the devel-
opment process. These in turn may lead to prob-
lems in the process and resulting product.

e Lack of explicit representation of the devel-
opment process. Developers may lack a clear,
correct, and consistent understanding of the de-
velopment process. Consequently the management
of change within the process may be incomplete
and inefficient. Moreover, a lack of representation
makes the process itself difficult to change and in-
creases the likelihood that changes will be carried
out incorrectly and inconsistently. A particularly
important aspect of this problem is lack of sup-
port for coordinating activities among members of
a team of developers.

2.5 Recommendations for PPLs

We believe that an appropriately designed software-
process programming language can alleviate many prob-
lems in change management. Certainly, the program-
ming of processes in a PPL directly addresses the need
for explicit representation of the development process.
Additionally, the use of appropriate language constructs
in formalizing the processes and products can help with
the other problems associated with change. We recom-
mend that PPLs should provide the following capabili-
ties:

o Explicit representation of both objects and inter-

object relationships.

o Explicit representation of the semantics of objects
and relationships, including constraints and deriva-
tions.

e Support for coordination of concurrent activities,
including concurrent access to persistent objects.

e Automation of as much of the change process as
is feasible, including propagation of data, mainte-
nance of consistency, and invocation of tools.

e Abstraction of processes, objects, and relationships
from the underlying implementation system. At
the logical level change management should be in-
dependent of the implementation, and changes to
the implementation should not affect the abstract
representation of development processes and prod-
ucts.

We believe that these items comprise a set of basic PPL
requirements in the area of change management. In the
next section we present an overview of APPL/A and
show how its features address these requirements.

3 APPL/A

APPL/A is a prototype PPL [39, 42]. It is defined as
an extension to Ada [45]. Ada provides the general-
purpose capabilities that we believe any PPL must in-
clude. APPL/A has additional features that address the
special needs of software process programming, includ-
ing change management, data modeling, derived data,
persistent data, consistency management, and accom-
modation of inconsistency.

The principal extensions that APPL/A makes to
Ada include programmable persistent relations, triggers
on relation operations, optionally-enforcible predicates
on relations, and several composite statements that sup-
port the synthesis of a wide range of transaction-related
constructs. The use of APPL/A constructs to support
change management is discussed further below and il-
lustrated in the example in Section 4.

3.1 Relations

Relation units in APPL/A provide for the storage of
persistent data. APPL/A relations, like relations in
conventional relational databases, represent the ab-
stract mathematical notion of a relation, i.e. a sub-
set of the cross-product of a list of object domains.
However APPL/A relations have several important dif-
ferences from the relations of conventional databases.
APPL/A relations can have composite and abstract at-
tribute types, they can have derived attributes, and
they have programmable implementations. These ex-
tensions of the conventional relational model [11] make
it more appropriate for software-object management
and for change management in particular. Some other
recent projects which implement relations include Post-
gres [33, 37], an advanced data-management system,
and AP5, which extends Common Lisp with rela-
tions [12].

Relation Source_Repository 1is ,
-- Stores source modules with related data
type src_repo_tuple is tuple
author: in name_type;
name: in name_type;
src: in source.code;
end tuple;
entries
insert(author: in name_type;
name: in name_type;
src: in source_code);
delete(author: in name_type;
name: in name.type;
src: in source_code);
update(author: in name_type;
name: name._type; src: source_code;
update_author: boolean;
new._author: name_type;
update_name: boolean;
new_name: name.type;
update_src: boolean;
new_src: source_code);
find(iterator: in out integer;
first: boolean;
found: out boolean;
t: out src_repo_tuple;
select_author: boolean;
author: name_type;
select_name: boolean;
name: name_type;
select_src: boolean;
src: source-code);
End Source_Repository;

Figure 1: Sketch of Specification for Relation
Source_Repository

Syntactically, an APPL/A relation declaration con-
sists of a specification and a body. The specification for
asimple APPL/A relation Source Repository is shown
in Figure 1. This relation stores source-code units, asso-
ciating a module name and author name with the code
for each unit. Features of APPL/A relations are ex-
plained below in terms of this example.

Each relation specification includes a defining tu-
ple type that specifies the names and types of the at-
tributes of the relation. A tuple type is similar to a
record type, but tuple attributes have modes like Ada
parameters. The attribute modes indicate the way in
which attributes may take on values. Attributes of
mode in must have values inserted directly by a user
of the relation; this mode applies to all of the at-

tributes of Source Repository. Attributes of mode
out take on values that are automatically derived by
the relation, whereas attributes of mode in out may
take on given and derived values in turn. (Derived
attributes are discussed below in reference to relation
Source_Compilations.)

Each relation specification also includes a set of en-
tries, analogous to Ada task entries, which represent the
operations on a relation. The entries for a relation must
be a non-empty subset of insert, update, delete, and
find. The insert entry takes parameters for attributes
of mode in and in out and implements the insertion of
a tuple with those parameters into the relation. The
update entry enables a tuple with given attribute val-
ues to be assigned new values for attributes of mode
in and in out. The delete entry deletes a tuple with
given attribute values. The find entry iteratively re-
turns tuples selected by given attribute values.

The specification for another relation, Source. -
Compilations, is shown in Figure 2. This relation
represents the derivation relationship between source
code and the object code compiled from it. Unlike
Source_Repository, this relation has some derived at-
tributes, designated by mode out.

The specification of any relation with derived at-
tributes may also contain a dependency specification,
which indicates how the derived attributes are to be
computed. In Source.Compilations the dependency
specification states that, for each tuple, the values of
the attributes obj and messages are to be computed
by a call to the procedure compile, where the corre-
sponding value of attribute src is taken as input. In
this way Source_Compilations represents the deriva-
tion relationship established between the input and out-
put of the compile tool. The body of the relation must
carry out the computations necessary to assign values
to derived attributes. If a relation has a dependency
specification then the computation of attributes must
be carried out according to that specification, and the
computed values must be kept up-to-date with respect
to the input values from which they are derived.

The body of a relation must generally implement
the semantics of that relation. This means that the
relation body must provide persistent storage, imple-
ment the relation entries, and compute and assign val-
ues for derived attributes. However, the details of the
implementation can be left up to the programmer of the
body (although a default implementation mechanism is
available). In this respect APPL/A relations are pro-
grammable. Thus, for example, the implementation of
a relation 1s nof constrained with respect to

o the persistent storage system

e the derivation strategy for computed attributes
(e.g. eager or lazy)

with Compile; -- separately defined compiler
with Code_Types; use Code_Types;
Relation Source_Compilations is
-- Relates source code to the object code
—- compiled from it. Encapsulates and
-- automates the compilation process.
type src_compilations.tuple is tuple
name: in name_type;
src: In source_code;
obj: out object_code;
msgs: out messages;
end tuple;
entries
insert{name: name_type;
src: source_code};
delete(name: name._type;
src: source_code;
obj: object_code;
msgs: messages);
update(name: name_type;
src: source_code;
obj: object_code;
msgs: messages;
update.name: boolean;
new_name: name_type;
update_src: boolean;
new._src: source_code);
find(iterator: in out integer;
first: boolean;
found: out boolean;
t: out src_compilations_tuple;
select_name: boolean;
name: name-type;
select_src: boolean;
src: source_code;
select_obj: boolean;
obj: object_code;
select.msgs: boolean;
msgs: Messages);
dependencies
determine obj, msgs by compile(
src, obj, msgs);
End Source_Compilations;

Figure 2: Specification for Relation
Source_.Compilations

e the caching strategy for computed attributes
(e.g., cached when computed or recomputed when
needed)

The implementor of a relation can program the body
in any way that satisfies the required semantics, and
the implementation can even change over time without
affecting users of the relation.

In providing a persistent data type, APPL/A can
be regarded as a “persistent” programming language.
Other such languages include PS-Algol [4], Adaplex [36]
(which extends Ada with a functional data model),
E [31] (the database implementation language of the
EXODUS [6] extensible DBMS and an extension of
C++), and Owl [34] (the object-oriented language of
the Trellis environment). This is a diverse group of lan-
guages, and APPL/A differs from each of them in many
particulars.

Support for Change Management APPL/A rela-
tions combine several capabilities that are recommended
for change management in Section 2.5:

o They provide a data structure for the explicit repre-
sentation of relationships among objects. Relations
can be used to determine the direction and extent
of propagation of changes to objects.

e They encapsulate derivation processes. Derivation
dependencies are represented explicitly and main-
tained automatically. Thus relations free develop-
ers from the need to track and maintain derivations
manually.

¢ They are abstract types with programmable imple-
mentations. Consequently, they serve to isolate log-
ical from implementation issues. The implementa-
tion can be varied without affecting users of the ab-
stract interface, and processes can be programmed
in terms of the interface without regard for imple-
mentation details.

Each of these capabilities is illustrated or discussed in
the example in Section 4. Their integration in relations
makes relations especially useful in change management.

3.2 Triggers

An APPL/A trigger unit is like an Ada task unit in that
it represents a concurrent thread of control. However,
triggers differ from tasks in that triggers lack entries.
Instead, triggers react indirectly and automatically to
operations on relations.

A trigger has a simple specification, comparable to
an Ada task’s but without the entries. A trigger body
comprises a loop over a selective trigger statement. A
selective trigger statement is like an Ada selective wait

statement, except that it has “upon” alternatives in-
stead of “accept” alternatives. Each upon alternative
consists of an upon statement followed by a (possibly
empty) sequence of statements. The upon statements
identify the relation operations to which a response is to
be made. The statements within and immediately fol-
lowing the upon statement encode the trigger’s response
to the relation operation.

The body of a trigger Maintain_Source_Compi-
lations is shown in Figure 3. The purpose of this
trigger is to automatically assure that every mod-
ule in Source_Repository is represented in Source_-
Compilations. The trigger responds to operations
on relation Source Repository and propagates corre-
sponding changes to Source_Compilations. For exam-
ple, when new source code is inserted into Source.Re-
pository, the trigger automatically inserts that code
into Source_Compilations; analogous responses are
made to update and delete operations.

Trigger Maintain Source Compilations includes
three upon statements, one each for the insert, delete,
and update entries of Source Repository. Each of
these upon statements is for a completion event, i.e. a
response is to be triggered only upon the successful com-
pletion of the corresponding entry call. (Upon state-
ments can also designate acceptance events, in which
case a response would be triggered by the acceptance
of the relation entry call.) Each upon statement also
includes a list of formal parameters. For an acceptance
event these comprise the in parameters for the relation
entry call; for a completion event these comprise the in,
in out, and out parameters for the call. Through these
parameters the actual values given to and returned from
the relation entry call are made available to the trigger.
Although it is not shown in the example, upon declara-
tions may also be given priority values. When an event
occurs (i.e. a relation entry call is accepted or com-
pleted), a signal is sent to each trigger that designates
that event in an upon statement. This signal includes
the identity of the event and the corresponding actual
parameters. Event signals are queued at the trigger in
order of priority and responded to in turn.

It should be noted that a trigger can make both
“synchronous” and “asynchronous” responses to events.
The body of an upon statement (within the do ... end
block) is executed synchronously with the event signal
in the same sense that an accept statement is executed
synchronously with an entry call. While the upon state-
ment is executing, the execution of the triggering rela-
tion is suspended at the point at which the signal was
generated (either acceptance or completion of the ren-
dezvous for the relation entry). However, the trigger
does not execute a full rendezvous with the relation, and
no parameters or exceptions are returned from the trig-
ger to the relation. Once the upon statement completes,

trigger body Maintain_Source_Compilations is

sc_t: src_compilations_tuple;
begin
loop
select
upon Source_Repository.insert(
author: in name_type;
name: in name_type;
src: in source_code)
completion do
-- propagate name and source to
-- Source_Compilations

Source_Compilations.insert(name, src);

end upon,;
or
upon Source_Repository.update(
author: in name_type;
name: name_type; src: source_code;
update_author: boolean;
new_author: name_type;
update_name: boolean;
new.name: name_type;
update_src: boolean;
new._src: source_code)
completion do
if update_name or update_src then
-~ update tuple with name and
-- src in Source_Compilations

end if;

end upon,;

or

upon Source_Repository.delete
author: in name_type;
name: in name_type;
src: in source_code)

completion do
-- delete tuple with name and src
-- from Source_Compilations

end upon,;
or
terminate;
end select;
end loop;
End Maintain_Source_Compilations;

Figure 3: Sketch of Trigger Body
Maintain_Source_Compilations

the synchronization with the relation is released and
the trigger and relation proceed in parallel. A sequence
of statements immediately following an upon statement
thus executes asynchronously with the relation and can
be used to provide an asynchronous response to relation
operations.

Support for Change Management Triggers sup-
port change management by automating responses to
change. Triggers react to operations that change rela-
tions. They can be used to propagate data, send noti-
fications, invoke tools, log changes, and perform other
tasks. Thus triggers can assume many of the duties of
change management that are left to humans in the sce-
nario of Section 2. Because of their “reactivity”, triggers
can also be easily added to and deleted from process pro-
grams. These changes to programs can be made with-
out affecting the relations to which the triggers respond
(or which they call), thus facilitating process-program
evolution. A trigger plays a central role in automating
changes in the example of Section 4.

3.3 Predicates and Consistency

An APPL/A predicate unit allows the process program-
mer to specify conditions on relations and to indicate
(optionally) whether they should be enforced like con-
straints. A predicate unit is a named boolean expres-
sion over relations. The expression language includes
existentially and universally quantified forms and con-
ditional expressions. Two predicates are shown in Fig-
ure 4. The first of these tests the uniqueness of name
in Source. Repository; the second tests the integrity
of name references between Source_Compilations and
Source Repository. Keywords used in these examples
are explained below.

When a predicate in a program is enforced during
the execution of that program, then no operation by the
resulting process on the relations to which the predicate
applies is allowed to terminate in violation of the predi-
cate. Any such operation is undone and causes an excep-
tion to be raised. An enforced predicate thus acts like
a constraint on the relations to which it applies. Unlike
conventional constraints, however, the default enforce-
ment of APPL/A predicates can be turned on and off
dynamically. This adds a dimension of flexibility to con-
sistency management in that it allows constraints to be
imposed when they are considered important but to be
relaxed at other times. (If a predicate is to be enforced
at all times, then it may be declared enforced, in which
case its default enforcement cannot be turned off.)

Predicates may be global or local. A global predi-
cate is so designated by the keyword mandatory. The
extent of a global predicate includes all programs which
use relations to which the predicate refers. A local pred-

-- a predicate to test uniqueness of names
mandatory enforced predicate
Name_Unique_in_Source_Repository is
begin return
every tl in Source_Repository

satisfies
no t2 in Source_Repository
satisfies
t1l.name = t2.name
end no

end every;
End Name_Unique_in_Source_Repository;

-- a predicate to test referential integrity
mandatory enforced predicate
Compiled_Modules_in_Repository is
begin return
every tl in Source_Compilations

satisfies
some t2 in Source_Repository
satisfies
tl.name = t2.name
end some
end every;

End Compiled_Modules_in_Repository;

Figure 4: Some Basic Predicates

icate may be included optionally in any program but it
need not be included in any; its extent is restricted to
those programs in which it is explicitly included. The
availability of global and local predicates adds another
dimension of flexibility to consistency management in
that it allows specification of the scope in which a pred-
icate should be enforced. Global predicates can thus
serve as process-independent constraints, whereas local
predicates can serve as process-dependent constraints.
Each predicate has a boolean Ada-style “attribute”
enforced which indicates whether it is enforced by de-
fault. For a predicate declared enforced this attribute
is a constant true. For other predicates this attribute is
a variable which may be set to set the default enforce-
ment of the predicate. APPL/A provides a capability
mechanism to control assignment to predicate enforced
attributes; this mechanism is illustrated in Figure 19 of
Section 4.4. Enforced attributes are not the only mech-
anism by which predicate enforcement can be controlled,
however. The default enforcement of a predicate, even a
predicate declared enforced, can be locally overridden
within certain transaction-like consistency-management
statements, as described in the following section.

Support for Change Management Predicates fa-
cilitate change management in several important ways.
Predicates allow the intended state of relations to be
explicitly expressed, and the enforcement of predicates
helps to assure that intended states are maintained.
The use of predicates thus provides guidance in making
changes to relations and helps to preclude inconsistent
changes. The evolution of consistency is also supported
in that predicates can be added to and deleted from pro-
cess programs without affecting the relations to which
they refer, and the enforcement of existing predicates
can be turned on and off over time. This kind of evolu-
tion is essential in software processes and process pro-
grams, but it is not supported by conventional databases
or many advanced object-management systems.

3.4 Consistency-Management
Statements

The consistency-management statements serve to group
individual relation operations into composite operations
that have transaction-like properties. They include the
suspend, enforce, allow, serial, and atomic statements.
For brevity, these are referred to below as the “CM”
statements.

The CM statements are designed to allow more flex-
ibility than is afforded by conventional transactions and
to support the construction of alternative “high-level”
or “long-term” transactions that are required for soft-
ware processes, Individually, the statements are more
specialized than conventional transactions in terms of
serializability, atomicity (rollback), and predicate en-
forcement. However, the statements can be nested, and
they may include concurrent tasks, so they can be used
to implement a wide variety of advanced transaction
models, such as nested, concurrent transactions, hierar-
chical transactions, “assertion transactions”, and more.
Each of the CM statements is described below.

Serial Statement The serial statement provides sim-
ple serializable read or write access to relations. The
serial statement includes a “read-write list” which iden-
tifies relations to which read or write access is desired.
(Read access allows other readers but excludes writers,
write access is all together exclusive.) Serial statements
are used in the example of Section 4 in Figures 14, 16,
and 19.

The serial statement does not affect the default or
actual enforcement of predicates. Within a serial state-
ment any operation that violates an enforced predicate
is individually rolled back; there is no rollback for the
statement as a whole.

Suspend Statement The suspend statement pro-
vides a context in which the actual enforcement of desig-

nated predicates is temporarily and locally suspended.
The suspend statement provides serializable write ac-
cess to the relations to which the suspended predicates
apply. Write operations on these relations are logged.
Upon completion of the suspend statement any of the
suspended predicates which are enforced in the sur-
rounding scope must be satisfied or the logged opera-
tions are rolled back. A suspend statement is shown in
Figure 15 in Section 4.

Enforce Statement The enforce statement provides
a context in which the actual enforcement of designated
predicates is temporarily and locally imposed rather
than suspended. Any operation within the scope of
the enforce statement that violates an enforced pred-
icate is individually undone as it occurs. Consequently,
there is no need for rollback for the statement as a
whole. Because there is no need to protect concurrent
processes from rollback or consistency violations, the
enforce statement is not serializable. However, if de-
sired, serializable access to relations can be obtained by
nesting an enforce statement within a serial statement.
(Similarly, if serializable, recoverable access is desired,
an enforce statement can be nested within an atomic
statement.) The use of an enforce statement (within
an atomic statement) is sketched in Figure 5 (explained
below).

Atomic Statement The atomic statement provides
serializable and recoverable access to relations. The
atomic statement has a read-write list of relations to
which serializable access is requested. Write operations
on these relations are logged. The atomic statement
does not affect predicate enforcement. However, the
propagation of an exception from the atomic statement
does cause rollback of the logged results of the state-
ment. Because the atomic statement may entail roll-
back it is serializable. An atomic statement is used in
Figure 5.

Allow Statement The allow statement also creates
a context in which the enforcement of predicates is sus-
pended. Any designated predicate that is viclated upon
entry to the allow may be violated by operations within
the allow and also upon exit from it. This allows an ez-
1sting predicate violation to be perpetuated and thereby
admits the possibility of only partial repair of the vio-
lation. No other enforced predicates may be violated
within or upon completion of the statement. The viola-
tion of any other predicate by an operation in the allow
statement causes that particular operation to be undone
(although a suspend statement can be nested within an
allow statement to suspend the enforcement of other
predicates). There is no rollback for the statement as
a whole. However, because it suspends the enforcement

of violated predicates, the allow statement is serializable
with respect to operations on the relations referenced by
those predicates.

A Simple Example Showing the Use of the State-
ments A simple example with atomic and enforce
statements is shown in Figure 5. The construct shown
might be called “assertion transaction.” An enforce
statement is used to create a scope in which the pred-
icate Source Length Within Limit is locally enforced.
This predicate (not shown) tests whether source mod-
ules in Source Repository conform to a maximum
length limit. Within the enforce statement this pred-
icate becomes an added assertion on consistency of the
relation. If the predicate is violated, the offending oper-
ation is undone and an exception is raised. The enforce
statement is nested within an atomic statement. The
atomic statement does not affect predicate enforcement,
but it locally provides serializable and recoverable write
access to Source Repository. If an exception is propa-
gated from the enforce statement (for any reason) it will
cause roll back of the atomic statement and, hence, of
the nested enforce statement. In this way, an effect sim-
ilar to a conventional transaction is achieved, but with
a strengthening rather than a relaxation of consistency
requirements.

atomic write Source_Repository;
begin
enforce Source_Length_Within_Limit;
begin
-- operate on Source_Repository here,
-- constrained by the Source_Length_-
-- Within_Limit; violation of the
-- predicate will cause an exception
-- to be raised.

end enforce;
end atomic; -- rollback upon exception

Figure 5: Sketch of a simple “Assertion Transaction”

The example shows that the CM statements can be
nested. Rules for nesting and concurrency within these
statements are essentially those defined by Moss [24]
for nested, concurrent transactions. It is also possible
in APPL/A to have nested transactions which are func-
tionally separate from their nesting transactions. Rules
for combination of the statements, the rationale for their
design, and additional examples are found in {39, 40].

Support for Change Management The consis-
tency-management statements support change manage-
ment by enabling a process to coordinate access to data

with other processes and to establish a local regime
for concurrency control, atomicity, and predicate en-
forcement. Thus these statements help to assure that
changes are made consistently, atomically, and free from
interference or observation by outside processes. The
statements enable a process to protect itself from and
adapt itself to outside changes in the enforcement of
predicates and the consistency of relations. In the ex-
ample of Section 4, the CM statements play an impor-
tant role in assuring that changes are made correctly
and in evolving existing data to satisfy newly-imposed
constraints.

3.5 Additional Comments on APPL/A
Support for Change Management

The constructs in APPL/A support change manage-
ment in several ways, as discussed above for each kind
of construct. These constructs as a group allow for
the explicit representation of relationships, constraints,
and processes (including transactions) that are essen-
tial to change management. They can be used in pro-
grams that automate software processes, including var-
ious kinds of change. Concomitantly they reduce the
reliance on humans to understand and manage change
manually. In light of these observations and the observa-
tions presented in preceding subsection, we believe that
the constructs introduced in APPL/A generally meet
the recommendations presented in Section 2.5. Thus
they should generally facilitate change management in
process programs.

4 An Extended Example

This section presents an extended example of change
management based on a process program written in
APPL/A. The process defined by the program includes
the coding and compiling of a set of modules, with asso-
ciated reviews. The example is presented in four parts,
each treated in a subsection below. Each subsection de-
scribes relevant aspects of the program and concludes
with a discussion of issues related to change manage-
ment. Section 4.1 presents the basic process program.
This illustrates change management within a software
process, as represented and implemented by the pro-
gram. Section 4.2 shows how a simple change to the
process is made through a simple change to the pro-
gram; Section 4.3 shows a more complicated change
to those same parts of the process and program. Fi-
nally, Section 4.4 presents a program which facilitates
change between the later versions of the process. Several
other points about process programs are also illustrated
through these examples.

10

4.1 The Initial Program:
Code_and_Compile

The process program is referred to below after its main
procedure, Code_and _Compile. Code_and _Compile illus-
trates many APPL/A features and shows how they can
be used to support change management in a software
process. Section 4.1.1 gives an overview of the process
and program. Section 4.1.2 introduces the APPL/A
relations used in the program, and Section 4.1.3 indi-
cates some of the associated APPL/A predicates. Sec-
tion 4.1.4 then presents procedures, triggers, and tasks
that exemplify the main control elements of the pro-
gram. As described below, the execution of the program
is driven more by a trigger than by the main proce-
dure. That is because the emphasis in this example is on
change management, and triggers are especially appro-
priate for reacting to changes in relations and invoking
an appropriate responses. A concluding discussion of
change-management issues is presented in Section 4.1.5.

4.1.1 Overview

The process that is programmed in Code_and_Compile
consists of four main activities: coding of source mod-
ules, review of source modules, compilation of source
modules, and review of compilation results. Source
modules are reviewed to determine their readiness for
compilation; if a module is accepted it is compiled, oth-
erwise it is recoded. Compilation results are evaluated
to determine the success of compilation; if the results
are accepted the module is considered complete, oth-
erwise it is recoded. The process terminates when all
modules have been successfully compiled.

The process combines both manual and automated
activities, doing so in various ways. Coding, which is a
manual activity, is accomplished by notifying the per-
son responsible for the task and then awaiting the result
of their actions, i.e. the source-code module, which is
accepted as input. Compilation is automated and is ac-
complished by encapsulating the compiler in a relation,
where it is automatically invoked as needed. Reviews
may be implemented by manual inspection and/or au-
tomated analysis; changes to the implementation of the
code review provide the basis for the examples in fol-
lowing sections.

An overview of the main program units of Code_~
and_Compile is presented in Figure 6. This figure shows
many of the control units, relations, and predicates
which are discussed in this section and indicates sev-
eral of the important relationships among them. To
reduce the complexity and length of the example, sev-
eral aspects of the process that are less relevant to
change mangement have been simplified or abstracted
away. Many procedures are represented by specification
only; also omitted are the bodies of relations. Context

clauses are left out where they can be reasonably in-
ferred. Exception handling is largely ignored, as are
provisions for gracefully terminating the process short
of completion. Additionally it is assumed that certain
data will not change during the process. These include
the relation System Structure and the names of mod-
ules (which are used as unique identifiers and relation
keys). Further details on the process and on the design
of Code_and_Compile are provided below where relevant
to the presentation of the code.

4.1.2 Relations

The program Code_and_Compile includes several rela-
tions:

System_Structure This is a binary relation (not
shown) that relates the names of executable systems
to the names of the modules from which they are com-
posed. It identifies the units to be coded and compiled.
(The linking of executable systems is beyond the scope
of this example. However, System_Structure would be
used in a linking process to identify the object mod-
ules required for a system build and to retrieve those
from relation Source_Compilations (described below).
Thus this relation exemplifies the way in which relation-
ships among data shared by different processes may be
represented.)

Source_Repository This relation was shown in Fig-
ure 1. It is used to hold the baseline copies of source
modules. When a source-code unit is created or revised
it is entered here prior to evaluation, compilation, and
so on. Module name serves as a unique identifier for
modules. Author name is not used in the process but
is included to suggest that additional information may
be associated with modules (as it would be in a more
realistically detailed process).

Source_Compilations This relation was shown in
Figure 2. It represents the derivation relationship be-
tween source modules and the object modules compiled
from them. Through this relation the dependence of ob-
ject code on the source code from which it is compiled
is made explicit, the required compiler is encapsulated,
and the compiler is automatically invoked as necessary
to keep the object code up-to-date with the source code.

Module_Status This relation maintains information
about the coding and compilation status of each modaule.
A sketch of the relation is shown in Figure 7.

Status values are defined by an enumerated type:

type status_value = (incomplete, unevaluated,
rejected, accepted, outdated);

11

Relation Module_Status is
-- Stores values to represent the status of
-- coding and compiling for modules.
type module_status_tuple is tuple
name: name.type;
code.status, compile_status:
status_value;
end tuple;
entries
... — standard insert, update, delete, find
End Module_Status;

Figure 7: Sketch of Specification for Relation Mod-
ule_Status

The intended semantics of code status values are as fol-
lows:

e Incomplete: The source code for the module is
not represented in Source Repository, which is in-
tended to hold the baseline for all source code.

e Unevaluated: The source exists in Source Repos~
itory but has not been explicitly evaluated to de-
termine whether it is ready for compilation or must
be recoded.

e Accepted, Rejected: The source code has been
evaluated with regard to its readiness for compi-
lation. Accepted implies that the source is ready
for compilation. Rejected implies that the source
should be revised; either it is not ready for compi-
lation or compilation has failed.

e Outdated: The module exists but is being revised.

Values for compilation status have analogous meanings.

Maintaining the consistency of module status val-
ues is an important issue in this process program.
For example, a module’s compile status should not be
accepted while its code status is rejected. Constraints
such as these are specified by separately declared pred-
icates, discussed in the next section.

4.1.3 Predicates

This section presents some of the predicates that are
used to define and enforce the consistency of relations
in Code_and_Compile.

One important type of consistency is the unique-
ness of attribute values and tuples in relations, i.e.,
key constraints. For example, module name is in-
tended to serve as a key in the relations Source Re-
pository, Source Compilations, and Module Status;
consequently module names should be constrained to

Main Program Trigger

Code_and_Compile: Monitor_Module_Status:

Calls System_Structure, Responds to operations on Monitor._-

]
]
]
1
I
1
1
]
1
1
!
Module_Status X Module_Status
i
1
1
H
]
1
]
]
]

Allocates tasks shown below

Source_Compilations

Module_Status_and_

Modules_Consistent:

Applies to Module_
Status, Source.
Compilations, and

Delete_Compilation:
Calls Source_Compilations,
Module_Status

Name 1 | Src i | Obj| Msgs

22

Source_Repository
Note: The symbols and And additional tasks ...
And additional

predicates ...

identify attributes in different

relations that have values in

———————————————————— |—-—-——-—--—---—-l-————————————I——————-——_————-———_____.._
Predicates i Relations (with Attributes) 1 Tasks
\ :
i] N
: System_Structure ! Create_Module: .
Name_Unique_in_ 1 X Calls Source_Repository,
Source_Repository: ' System_ Module_ X Module_Status
Applies to Source. | Name Name § :
Repository : :
: : Evaluate_Code:
: \ Calls Source_Repository,
: : Module_Status ! Module_Status
Compiled Modules_ I . !
in_Repository: ! Name t | Code_ Compile_ !
Applies to Source. : Status | Status : :
Repository, Source_ | | ! Rev;segModu;fz)
Compilations ! ! Calls Source_Repository,
X . Module_Status
X Source_Repository X
Module_Status_ X Auth N Ste 1 |
: . u ame rC
Internélly_ConSIStent. ! f ! Propagate Module._....
Applies to Module : : Calls Source_Repository,
Status : : Source_Compilations,
: : Module_Status
: I
1 1
i I
1 t
1 I
1 I
1 I
1 I
1 I
1]
i i
i i
1 i
1 1
1 i
i i
I 1
1 1
i i
i i
1 1
1 i

commaorn.

Figure 6: Principal Units in the Program Code_and _Compile

12

mandatory predicate
Module.Status.and_Modules_Consistent is
begin return
every t1 in Module_Status

satisfies
if t1.code_status = incomplete
then
no t2 in Source_Repository
satisfies
tl.name = t2.name
end no

else -- tl.code_status /= incomplete
some t2 in Source_Repository

satisfies
tl.name = t2.name;
end some
end if
and -- similarly for compile status

.. - and Source_Compilations
end every;
End Module_Status_and_Modules_Consistent;

Figure 8: A Predicate to Test the Consistency of Mod-
ules and their Status

be unique in those relations. An example of a predicate
which enforces such a condition is shown in Figure 4.
Another important type of consistency is inclu-
sion dependencies between relations (i.e., referential in-
tegrity). This condition applies when attribute val-
ues in one relation should be a subset of those found
in another relation. For example, System Structure
is taken to define the set of legitimate module names
for use in Code_and _Compile. Consequently, only those
names should appear in the module-name attributes of
the other relations in the program. Similarly, the mod-
ules represented in Source_Compilations may be lim-
ited to a subset of those in Source Repository. This
condition would be enforced if it were considered desir-
able to keep both copies of a source module consistent
and up-to-date. However, consistency between separate
copies of source modules is not necessarily a require-
ment of all coding processes that might use these rela-
tions. An out-of-date version of a source module and
the corresponding object code may be allowed to re-
main in Source_Compilations when that version of the
source code has been deleted from Source Repository
in anticipation of an updated version. This illustrates
that choices about which predicates to enforce as con-
straints, and where and when they should be enforced,
are process-dependent design decisions. A predicate
that tests inclusion dependencies is shown in Figure 4.
Other predicates are used to define other kinds
of consistent states within and between relations. In

13

mandatory predicate
Module_Status_Internally_Consistent is
begin return
every t in Module_Status satisfies
if t.compile_status in
unevaluated..accepted
then
t.code_status = accepted
else
true
end if
and
if t.code_status /= accepted then
t.compile_status = incomplete or
t.compile_status = outdated
else
true
end if
end every;
End Module_Status_Internally_Consistent;

Figure 9: A Predicate to Test the Internal Consistency
of Module Status Values

Code_and_Compile the consistency of status values is
important. For a module, the compile status should not
be greater than the coding status, since the quality of
compilation results depends on the quality of the code
compiled. So, for example, the compilation status for a
module should not be accepted while the coding sta-
tus for the module is rejected, and if the compilation
status for a module is accepted or rejected (implying
that the module has been compiled) then the coding sta-
tus for the module should be accepted (implying that
the module is available for compilation).

Another aspect of consistency related to the status
values is the correspondence of status values with the
objects to which they refer. For example, a module code
status value of incomplete is intended to imply that
the module is not represented in Source Repository.
Some examples of predicates governing the consistency
of status values are shown in Figures 8 and 9.

4.1.4 Procedures, Tasks, and Triggers

The procedure Code_and Compile (Figure 10) repre-
sents the main program for the process. The body of
this procedure is a simple loop to initialize the code
and compile status for each module to incomplete. All
other operations of the process are performed reactively
by the trigger Monitor Module _Status, which allocates
tasks as necessary to accomplish the concurrent cre-
ation, propagation, and evaluation of data.

Trigger Monitor.Module Status effectively con-

procedure Code_and_Compile is
-- Main program of code and compile process.
trigger Monitor_Module_Status;
trigger body Monitor_Module_Status
is separate;
Begin
-- Initialize module status
for ss_t in System_Structure loop
if not Module_Status‘member(
select_name => true,
name => ss_t.module_name)
then
Module_Status.insert(
mn_t.name, incomplete,
incomplete);
end if;
end loop;
-- Subsequent operations performed auto-
-- matically and concurrently by trigger
-- Monitor_Module_Status and tasks that
-- it allocates
End Code_and_Compile;

Figure 10: Procedure Code_and_Compile

trols the execution of the program following the initial-
ization of status values. It responds to insertions or
updates of module-status values and invokes whatever
operation is called for by the new status. These oper-
ations characteristically involve the allocation of a task
to carry out required work concurrently. In this way the
trigger acts as an interpreter of module status. This in-
terpretation continues until all modules have a compile
status of accepted, at which point the trigger, and con-
sequently the main procedure, terminate. A part of this
pattern of execution is illustrated in Figure 4.1.4. The
body of the trigger is shown in Figure 12.

Monitor Module Status makes use of two main
subprocedures, one to respond to changes in code sta-
tus, and one to respond to changes in module status.
Each of these encapsulates a case statement in which
the appropriate response to each status value, if any, is
invoked. The procedure Respond_to_Code_Status (Fig-
ure 13) makes the following responses:

o If the new value is incomplete then the procedure
Create_Module is invoked to (re)create the named
module.

e If the new value is unevaluated, the procedure
Evaluate_Code is invoked to evaluate the source
code for the module. The evaluation will return a
recommendation to accept or reject the source, and
the module’s code status is then set accordingly.

14

trigger body Monitor_Module_Status is
-- Respond to changes of status values
-- in Module_Status

Begin
loop
select
upon Module_Status.insert(
name: name.type;
code_status, compile_status:
status_value)
completion do
respond_to_code_status(
name, code_status);
respond_to_compile_status(
name, compile_status);
end upon,;
or
upon Module_Status.update(
name: name_type;
code_status, compile_status:
status_value;
update_name: boolean;
new._name: name.type;
update_code_status: boolean;
new_code_status: status_value;
update_compile_status: boolean;
new_compile_status: status_value)
completion do
if update_code_status then
respond_to_code._status(
name, new.code_status);
end if;
if update_compile_status then
if new_compile status = accepted
and then
all_compile_status_accepted
then
exit;
else
respond_to_compile_status(
name, new_compile_status);
end if;
end if;
end upon,;
or
terminate;
end select;
end loop;
End Monitor_Module_Status;

Figure 12: Trigger Body Monitor.Module_Status

Some Control Elements

Code_and_Compile (Procedure)

Module_Status.Insert(some_mod,

incomplete, incomplete);

\\ Module_Status (Relation)

Monitor_Module_Status (Trigger)

CM := new Create_Module;

 (3)

A 4

Create_Module (Task)

! Transaction (Suspend Stmt.)

Source_Repository.Insert(
some_auth, some_mod, src);

]

I

I

I

1

1

! Module_Status.Find(...,
' name => some.mod, ...);
|

1

1

I

I

|

|

Module_Status.Update(...,
name => some.mod, ...,
new_code_status =>

unevaluated, ...);

o e e o e v e e e e -
I

Key of Event Kinds

— Relation Entry Call

----- » Event Signal
- -» Task Allocation

Affected Relations

—t Name | Code. | Compile.

Status | Status

Source_Repository (Rel.)

Auth Name Src

Explanation of Events

(1) Initialize status for a new module to incomplete
by insertion into relation Module_Status.

(2) Automatically signal insert operation to
trigger Monitor_ Module_Status.

(3) Allocate a task to create the new source module.

(4) As a “transaction”, insert the new source and
update module status to unevaluated.

Continue execution in trigger Monitor Module_-

Status with response to signal generated by the

update of Module_Status.

Figure 11: A Characteristic Sequence of Events in the Execution of Code_and_Compile

o If the new value is accepted then the procedure
Propagate Module for_Compilation is invoked to
insert the name and source code for the module
into relation Source Compilations. The trigger
thus automates the propagation of the source code
between relations. The inclusion of source code in
Source_Compilations also assures that the code
will be automatically compiled.

o If the new value is rejected then the procedure
Revise Module is invoked. This procedure sets the
code status for the module to unevaluated and
allocates a task to revise the source code. When
that task subsequently updates the source code in
Source Repository, the module code status is set
to unevaluated.

o If the new value is outdated then the correspond-
ing tuple from Source_Compilations is deleted.
This implements a policy that “dangling” source
and object code should not be left in Source_-
Compilations once the base module (in Source -
Repository) has been deleted.

The procedure Respond_to_Compile Status has a sim-
ilar structure. When a module is newly compiled, it
invokes the procedure Evaluate Compilation; when
a compilation is rejected, it invokes the procedure
Revise Module. Otherwise, it takes no action: if the
new status is accepted the module is considered fin-
ished, whereas if the new status is incomplete or
outdated the insertion or update of source code must
occur before any other response.

The procedures for the various actions taken in
response to status changes are declared in a package
Code_and Compile_Subroutines. A sketch of the body
of this package, showing some of the procedures, is
found in Figure 14.

The procedure Create Module can serve as a model
of the subroutines used in responding to new status val-
ues. The role of the procedure is to allocate and initiate
a task of type Create Module _Task (Figure 15), which
represents the real work in coding a new module.

The task is passed the name of the module to be
coded, and it then requests the identifier of the pro-
grammer who is assigned to code the module. The task
notifies the programmer that the module is to be coded,
and then it waits for the code to be returned. The cod-
ing activity is presumed to be performed more or less
manually (as may be the process of assigning the pro-
grammer in the first place). Thus this task illustrates
how the interaction of manual and automated activities
can be defined in an APPL/A process program.

When the programmer returns the source code for
the module the code is inserted into Source_Repository
and a code status of unevaluated is assigned to the
module in Module_Status. All of these updates are

16

procedure Respond_to_Code_Status(
module: in name_type;
status: in status_value) is
Begin
case status is
when accepted =>
propagate_module_for_compilation(
module);
when rejected =>
revise_module(module);
when incomplete =>
create_module(module);
when unevaluated =>
evaluate_code(module);
when outdated =>
delete_compilation(module);
end case;
End Respond_to_Code_Status;

TFigure 13: Procedures to Respond to Changes in Mod-
ule Code and Compile Status

made within a suspend statement. The suspend state-
ment provides serializability and atomicity for the com-
posite update, thus assuring that intermediate states
during the update will not be accessible to outside
processes. It also locally suspends the enforcement of
the predicate Module_and Module Status_Consistent,
which is violated by the update of Source_Repository.
Within the suspend statement that violation is allowed
to stand temporarily, and it is subsequently repaired
by the update of Module_Status. The statement as a
whole then leaves the relations in a new state which does
satisfy the predicate. If the update to Module Status
were to fail for some reason, then the predicate would
not be satisfied. In that case, though, the suspend state-
ment would roll back, returning the relations to the state
which held prior to the execution of the statement. In
that way the consistency of relations is preserved.

The rationale for the use of a separate task in
CreateModule bears noting. The allocation of a sep-
arate task helps to increase concurrency and also re-
duces the potential for deadlock among the various re-
lations and triggers. Such allocated tasks are free to
call whatever relations are necessary without blocking
the triggers that allocated them; those triggers are free
to respond to further operations on relations, including
operations performed directly or indirectly through the
allocated tasks.

Some comments should also be made about
the other procedures invoked (indirectly) by trigger
Monitor Module Status. Procedure Revise Module
(not shown) is substantially similar to Initiate-

package body Code_and_Compile_Subroutines is
-- Procedures used by Respond_to_Code_Status

-- and Respond_to_Compile_Status in responding
-- to changes of module status values.

procedure Create_Module(
module: in name_type) is
-- Allocate a task for concurrent coding
-- of the named module
task type Create_Module.Task is
entry initiate(
module_name: in name_type);
end Create_Module_Task;
-- other declarations
task body Create_Module.Task
is separate;
Begin
-- allocate and initiate a
-- Create_Module_Task
End Create_Module;

procedure Evaluate_Code(
module: in name_type) is
-- Set module code status to “accepted”
-- on the assumption that it has been
-- adequately inspected by the programmer
Begin
serial read Module_Status;
ms_t: module_status_tuple;
begin
ms.t := Module_Status’tuple(
select.name => true,
name => module);
Module_Status.update(ms_t.name,
ms_t.code_status,
ms_t.compile_status,
update_code_status => true,
new_code_status => accepted);
end serial,;
End Evaluate_Code;

-- other procedures
End Code_and_Compile_Subroutines;

Figure 14: Body of Package Code_and Compile_Sub-
routines

task body Create_Module_Task is
-- A task for the initial coding of a module.
module: name_type;
programmerid: id_type;
code: source_code;
reply_id: id_type := new_id;
sr_t: proj-src_tuple;
ms_t: module_status_tuple;

procedure Get_Programmer_Id(
module: in name_type;
programmer: out id_type)
is separate;
Begin
-- get module name and programmer id
accept initiate(modulename: in name_type)
do
module := name_type;
end accept;
get_programmer_id(module, programmer_d);

-- notify programmer of module to create

-- and await new code

send_message(programmer.id, reply-id,
“Create module: ” & module);

recv_message(reply_id, programmer_d,
code);

-- save new code and update code status
suspend
Module_Status_and_Modules_Consistent;
begin
-- insert new code
Source_Repository.insert(
programmer(programmer_d),
module, src);
-- set module code status to “unevaluated”
ms_t := Module_Status’tuple(
select_name => true,
name => module);
Module_Status.update(
ms_t.name, ms_t.code_status,
ms_t.compile_status,
update_code_status => true,
new.code_status => unevaluated);
end suspend;
End Create_Module_Task;

Figure 15: Task Body Create_Module.Task

17

Coding. It represents the revision of an existing module
rather than the creation of a new module. When the re-
vised source code is submitted by a programmer, the
task updates Project_Source Repository to replace
the old value of the source code with the new value.
(Status values are also atomically and consistently up-
dated as in Code Module_Task.) Thus, Revise Module
reflects a simple policy regarding the management of
outdated source-code modules. The particular process
is not so important here; what is important is that the
policy is represented explicitly and implemented auto-
matically.

Code_and Compile also includes subprocedures to
evaluate the results of coding and compiling. The pro-
cedure to evaluate the results of coding (shown in Fig-
ure 14) is trivial in that module code status is always
set to accepted on the assumption that the programmer
only submits the code once it is of acceptable quality.
The procedure to evaluate the result of compilation is
more complicated in that it may recommend either ac-
ceptance or rejection. The details of this procedure are
not spelled out here. Presumably the recommendation
depends on some sort of examination of the messages
generated by the tool involved. In general that exami-
nation may be manual or automatic. For example, com-
pilation may be rejected automatically if any messages
are generated; alternatively, it may be rejected automat-
ically if error messages are produced, but turned over for
manual review if only warning messages are produced.
The evaluation procedures thus have two aspects which
are interesting from the perspective of process program-
ming: they represent the encapsulation of development
policies, and they represent the opportunity for the in-
tegration of manual and automatic activities in the pro-
cess.

4.1.5 Discussion of Change Within the Process

The process program Code_and_Compile supports the
management of change in several ways recommended in
Section 2.5. It provides an explicit representation of
many aspects of the process, including those parts in-
volved with change. It makes many kinds of change
automatically, for example, the propagation of code
between relations and the corresponding adjustments
of status. It provides automated control over manual
changes: the activities that require manual participa-
tion are automatically invoked, and the products of
manual activities are automatically inserted into the
proper relations. The combination of automated and
manual changes is also automatically coordinated, so
that, for example, when a programmer submits a new
module, the status for the module is also updated.
Relations play several roles with respect to change
management. They represent relationships between ob-
jects, and they can be used to determine the direc-

18

tion and extent of dependent changes that follow when
an object is changed. For example, when a source
module is updated in Source Repository, related sta-
tus values can be found and updated in Module -
Status, and dependent object modules can be found
and updated in Source_Compilations. The relation
System Structure could similarly be used to track
down executable systems that depend on a modified
source module. The relation Source_Compilations
not only represents the derivation relationship between
source code and object code, it also encapsulates the
compiler and automatically invokes it as necessary to
keep the object code up-to-date with changes to the
corresponding source code.

The trigger Monitor Module Status plays an im-
portant role in automating change management. In re-
sponse to changes in Module_Status it propagates up-
dates, notifies users of tasks to be done, and invokes
subroutines to accomplish a variety of tasks. Through
these activities it becomes a principal controlling agent
of the program.

Predicates are used to specify consistent states of
relations and are enforced to assure that changes to
relations are made consistently. For example, the en-
forced predicated Name Unique_in Source Repository
assures that Source_Repository cannot be updated so
that two tuples have the same value for the name attri-
bute. This prevents changes to module names which
would invalidate the use of names as unique identi-
fiers. The predicate Module Status_and Modules_Con-
sistent (Figure 8) is enforced to assure a certain degree
of consistency between modules and their status. It also
helps to give observers of status values confidence that
changes in status reflect changes in the state of modules.

Composite updates to relations can be made serial-
izably, atomically, and consistently with the consisten-
cy-management statements. For example, the suspend
statement is used to suspend enforcement of predicates
over module status when changes to modules imply
changes to module status. These cannot be performed
in a single operation, but all must be accomplished if a
correct and consistent state transition is to be achieved.
The serial statement is used to provide concurrent (and
possibly competing) tasks with serializable access to the
data they need, thus preventing changes made by one
process from interfering with those made by another.

4.2 A Simple Revision to the Process
and Program

This section illustrates how a simple change to the pro-
cess can be implemented by a small change to the pro-
cess program. It involves a revision of the procedure
Evaluate Code (the original version of which is shown
in Figure 14).)

procedure Evaluate_Code(module:
in name_type) is
-- Send module to manager for review
-- to determine status.
new_status: status_value;
mgr.id: id_type := get.manager.id;
Begin
send_message(mgr.id, reply.id,
“Review module: ” & module};
recv_message(reply_id, mgr.id,
new_status);

serial read Module_Status;
ms_t: module_status_tuple;
begin
ms_t := Module_Status’tuple(
select.name => true,
name => module);
Module_Status.update(ms_t.name,
ms_t.code_status,
ms.t.compile_status,
update_code_status => true,
new_code.status => new_status);
end serial;
End Evaluate_Code;

Figure 16: First Revision of Evaluate Code

4.2.1 A Revised Procedure Evaluate_Code

To motivate the revision, suppose that the execution of
Code_and_Compile leads to too many errors in the com-
pilation of source modules. Suppose that a review of the
process indicates that programmers do not consistently
evaluate their own code adequately and that they too
often submit it for compilation before it is likely to com-
pile. Suppose further that, to address this problem, it
is decided that source code should instead be evaluated
by a manager and that the code status of each module
should be set according to this evaluation. That change
to the process can be implemented just by making a
change to the procedure Evaluate_Code. Previously,
this procedure simply set the code status of the given
module to accepted. In the new version, it signals the
manager to review the source code and receives back
a status value which is assigned to the module. The
revised procedure is shown in Figure 16.

4.2.2 Discussion of Change to the Process and
Program

This part of the example illustrates that changes to a
process can be made explicit by changes to its program.
As with the initial version of Evaluate_Code, the new

19

and modified activities of the revised version are auto-
matically controlled and coordinated with other activ-
ities in the process. Updates to code status are still
made serializably and consistently.

In this particular example the change to the pro-
gram was limited to just one procedure. Changes may
be more complex in general, but, as with conventional
programs, proper modularization can limit the extent of
revisions to process programs. Because APPL/A is an
extension of Ada, even a change to the program requires
some recompilation and relinking. As in this example,
though, recompilation need not be extensive. Moreover,
the time to recompile and relink the new program is
likely to be small compared to the duration of the pro-
cess it represents. Even coding of the revised program
may be a comparatively brief activity.

The costs of recoding, recompiling, and relinking
are not the only ones that may be associated with the
revision of a process program. One potential cost is the
loss of data in going from one version of the program to
the next. In APPL/A, however, the data that are stored
in relations are persistent, and this persistence enables
the data developed using one version of a program to
be carried over to a later version in which the relations
are reused.

Another possible cost is the loss of work being per-
formed manually. This loss may occur when the exe-
cution of a process program is terminated before com-
pletion. In this case, though, manual activities may be
continued if their results can be used in the revised pro-
gram (and if that program is prepared to accept them).
For example, if Code_and _Compile is killed while in ex-
ecution, the programmers who are coding modules may
continue their work if it is expected that the modules
will be useful in the revised program. Note that the
costs indicated above are not peculiar to programmed
processes; they may occur whenever a development pro-
cess is changed. Process programming simply provides
a context in which the costs can be seen, analyzed, and
addressed explicitly.

The issues discussed above arise when the code of
a process program is changed. The primary motivation
for changing the code of a process program is to mod-
ify its behavior. An alternative approach to program
modification in a compiled language such as APPL/A
is to make the program interpretive based on certain
data and then to change those data. Some interpreta-
tion is performed in Code_and_Compile in that changes
to status values drive subsequent activities. Status val-
ues are changed, however, only as a part of the normal
pattern of operation of the program. At the other end
of the spectrum, the pattern of execution of a program
can be made dependent on data that are not changed
during ordinary execution of the process but that are
changed only to change the behavior of the program. In

Code_and_Compile this could be implemented by a flag
which determines the choice of alternative procedures
for evaluating source code, where that flag was set by a
manager either within or outside the scope of the pro-
cess. The program would then represent, in effect, a pa-
rameterized process. In such cases, however, it may be
argued that the “real” process is not just the pattern of
behavior which results from the interpretation selected
at any one time, but rather that the process is the whole
interpretive scheme with all of its possible alternatives.
In any case, the design of process programs with an in-
terpretive element represents yet another approach to
the mangement of change of in software processes, one
which depends on a change of data rather than a change
of code.

4.3 A More Complicated Revision to
the Process and Program

This section illustrates a change to the process and
the program that extends the previous changes. For
purposes of this part of the example, suppose that
the change to procedure Evaluate. Code does not ade-
quately reduce compilation errors, and suppose that the
remaining errors are found to be largely attributable to
problems with inter-module dependencies, which man-
agers do not effectively identify in their review of indi-
vidual modules.

In order to address this problem, it is decided that
two further requirements should be placed on the over-
all development process. First, allowed inter-module de-
pendencies must be declared in advance of coding. Sec-
ond, the criteria for acceptance of module source code
should be strengthened by requiring conformance to the
declared intermodule dependencies. The specification of
allowed intermodule dependencies is beyond the scope of
Code_and_Compile, but we shall assume that this infor-
mation is available when Code_and_Compile is executed.

The process revision sketched above is implemented
by the following changes to Code_and_Compile:

e The inclusion of relations to represent allowed and
actual intermodule dependencies;

e The addition of predicates and related functions to
specify and enforce the consistency of these rela-
tions; and

e Further revision of Evaluate_Code to take inter-
module dependencies into account.

These changes are discussed below.

4.3.1 Relations

This revision of Code_and _Compile introduces two new
relations that are instances of the same relation type.

20

relation type Binary_Name_Relation is
-- Represents a directed binary relation
-- between two named entities.

type binary_name_tuple is tuple

from, to: name_type;

end tuple;
entries

.. - standard insert, delete, update, find
End Binary_Name_Relation;

-- Two instances of Binary_Name_Relation

-- to characterize module use

Allowed_Dependency: Binary_Name.Relation;

-- Represents the allowed “uses” relation

-- between modules designated by name: the

-- “from” module is allowed to use the

- “t0” module.

subtype allowed_dependency.tuple is
Binary_Name_Relation.binary _name._tuple;

Actual_Dependency: Binary_Name_Relation;

-- Represents the actual “uses” relations

-- between modules designated by name: the

-- “from” module actually uses the “to”

-- module.

subtype actual_dependency_tuple is
Binary_Name_Relation.binary name_tuple;

Figure 17: Relations Representing Actual and Allowed
Use Relationships among Modules

The relevant declarations are shown in Figure 17. The
relation type is Binary Name Relation. It is a stored
relation of tuples with two attributes, from and to,
both of which have type name_type. This relation type
is designed to represent sets of ordered (or directed)
pairs of named objects. The two relation instances
are Allowed Dependency and Actual Dependency, in
which the names refer to modules. These relations are
intended to represent the allowed and actual use by one
module (the “from” module) of another module (the
“t0” module). They support a very simple and general
kind of interface control, which is intended only to be
suggestive of the kinds of precise interface control which
are presented in [46]. As described below, these rela-
tions are used in evaluating modules to determine their
readiness for compilation, and predicates over these re-
lations are used to constrain the set of acceptable mod-
ules. As noted in the introduction to this section, the

relation Allowed Dependency is produced by a design
activity which occurs prior to execution of Code_and_—
Compile, but the relation Actual Dependency is de-
termined as part of Code_and_Compile as modules are
coded.

package Dependence_Consistency is
function Dependencies_Consistent(
module: name_type) return boolean is
Begin
for t in Actual_Dependency loop
if t.from = module or t.to = module
then
if not Allowed_Dependency’member(t)
then
return false;
end if;
end if;
end loop;
return true;
End Dependencies_Consistent;

mandatory predicate
Accepted_Code_Dependency_Conforms
begin return
every ms.t in Module_Status satisfies
if ms.t.code_status = accepted then
dependencies.consistent(ms_t.name)
else
true
end if
end every
End Accepted_Code.Dependency_Conforms;

End Dependence_Consistency;

Figure 18: A Function and Predicate for Consistency of
Module Use

4.3.2 Predicates

Predicates introduced in the second revision of Code_-
and_Compile govern the consistency of the new relations
individually and with respect to relations previously in
the program. The most important of the new predicates
is Accepted Code Dependency Conforms (Figure 18).
This predicate establishes a new criterion of consistency
for modules that have a code status of accepted, one
which requires their actual intermodule dependencies to
be a subset of their allowed intermodule dependencies.
The effect of this predicate is to impose a more stringent
standard for modules that are compiled.

21

4.3.3 Second Revision of Evaluate_Code

The final piece of this revision to Code_and Compile is
another revision of procedure Evaluate_Code. In this
revision (not shown) the actual external references of
the module are determined by analysis and stored in
relation Actual Dependency. Then a check is made to
see whether the Actual Dependency tuples for the mod-
ule are a subset of the Allowed Dependency tuples for
the module. If so, the module code status is set to
accepted, otherwise, it is set to rejected.

4.3.4 Further Discussion of Change to the Pro-
cess and Program

This example illustrates a more extensive and compli-
cated change than the simple replacement of a proce-
dure. However, because the original program was well
modularized, the impact on existing code was still mi-
nor.

The new approach to evaluating source code that
is represented here shows one way that new tools can
be integrated into a process. In this case the tool is
a data-dependency analyzer which is encapsulated in a
new procedure; new tools may also be encapsulated in
relations and triggers. Because this tool is represented
explicitly in the program, its relationship to other ac-
tivities (manual and automated) can be determined by
analysis of the program. Additionally, the invocation of
the tool is automatic.

Another feature of the change made here is the ad-
dition of a new predicate. This represents a change in
the consistency requirements for the process, in partic-
ular a strengthing of constraints on the status of source-
code modules. The new predicate is represented explic-
itly and enforced automatically. A potential problem,
though, if the change described here is made dynami-
cally while the process is executing, is that the existing
source-module status values may not satisfy the new
predicate. Violations of the predicate would then have
to be repaired before the revised process could be suc-
cessfully executed. That task is addressed in the next
section.

4.4 A Dynamic Transition Between the
Processes

As a final example of change management, suppose that
the changes described above are to be instituted dynam-
ically during the execution of a coding process. The
intention is to kill the initial process program but to
have the revised process program pick up where the ini-
tial one left off, in effect as if it had been executing all
along. For this effect to be achieved, the objects pro-
duced by the initial process will have to be bound into
the revised process. That will happen automatically

since the revised program makes use of the relations
from the initial program and the data in those relations
are persistent. However, the code units in those rela-
tions may have status values that are inconsistent with
the new constraints on module use. In order to adapt
the existing code to the new constraints it is necessary
to determine the intermodule dependencies for the ex-
isting modules, check those against the allowed inter-
module dependencies (assuming these have been speci-
fied), and adjust the status of those modules (and the
dependent systems) which do not conform to the new
constraint. These actions are performed in the proce-
dure Initialize Status From Dependencies, shown
in Figure 19.

In the first part of the procedure the tuples for
Actual Dependency are entered by a procedure that an-
alyzes existing source code modules. Once this relation
is initialized, the status of previously accepted modules
is checked. If any do not satisfy the new dependency cri-
teria they are rejected, as are the systems that depend
on them.

This procedure also illustrates the use of the en-
forced attribute of APPL/A predicates and the related
predefined operations. When the new mandatory pred-
icate Accepted_Code Dependency _Conforms is intro-
duced it is automatically enforced by default. It is not
initially violated, however, because the relation Act-
ual Dependency is empty and the condition tested by
the predicate is trivially true. As Actual Dependency
is initialized, though, the predicate may be violated.
Such a violation would prevent further updates to any
of the relations referenced in the predicates, including
Actual.Dependency (unless those updates happened to
leave the predicate satisfied). To counter this possibil-
ity, an initialization procedure can turn off the default
enforcement of the predicate. It can do this by acquiring
a capai)ility for the predicate, then using that capabil-
ity in the predefined predicate operation enforced to
set the corresponding predicate attribute enforced to
false (thus turning off the enforcement). So long as the
initialization procedure holds the capability no other
process can acquire it to turn the enforcement of the
predicate back on.

The initialization of Actual Dependency and the
repair of predicate violations are then performed while
the predicate is not enforced. During this process, serial
statements are used to read and write the relevant re-
lations. This precludes interference by other processes,
for example, competing changes to module status. At
the conclusion of the initialization procedure, once con-
sistency with the predicate has been established, the
enforcement of the predicate is turned back on and the
capability is released. An advantage of this approach,
as opposed to a suspend statement, is that a failure in
the initialization process will not result in rollback with

22

procedure Set_Status_From_Dependencies is
-- Analyze intermodule dependencies for
-- accepted modules in Source_Repository
-- and set code status accordingly.
capability: integer;
procedure Analyze_And_Record_Dependencies(
module: name_type) is separate;
Begin
-- turn off predicate which constrains code
-- status wrt intermodule dependencies
capability :=
Accepted_Code_Dependency_Conforms’acquire;
Accepted_Code_Dependency_Conforms’enforced(
capability, false);

serial read Allowed_Dependency,
Actual_Dependency;
begin
-- Initialize Actual Dependency
serial write Actual_Dependency;
begin
for sr_t in Source.Repository loop
analyze_and_record-dependencies(
sr_t.name);
end loop;
end serial;

-- Check dependencies, set status
serial write Module_Status;
begin
for fixed ms_t in Module_Status where
ms_t.code_status = accepted
loop
if not dependencies_consistent(
ms_t.name) then
.. - code_status => rejected
-- compilestatus => outdated
end if;
end loop;
end serial;
end serial;

-- turn on predicate; release capability
Accepted_Code_Dependency_Conforms’enforced(
capability, true);
Accepted_Code_Dependency.Conforms’release(
capability);
End Initialize_Status_From_Dependencies;

Figure 19: Procedure Initialize Status_From_-

Dependencies

the consequent loss of work.

This example addresses just a few more aspects of
change management in software processes and process
programs. The scenario demonstrates the reuse of data
(e.g., modules and systems). It does not preclude the
conservation of off-line manual activities (e.g., program-
mers who were working on modules when the initial pro-
cess was killed may submit those modules to the revised
process). The principal difference between the old and
new programs is the addition of the constraint on ac-
cepted modules, i.e., a change from one constraint sys-
tem to another. The procedure presented in this section
implements a systematic transition between those sys-
tems.

5 Related Work

The use of an example called “code and compile” invites
comparison with Make [15]. Make represents the seed of
an idea about process management whereas process pro-
gramming represents the flowering of that idea. Make
offers certain basic but comparatively limited capabili-
ties; APPL/A| as a process-programming language, of-
fers more general capabilities. Make is oriented toward
automated tools and the maintenance of derivation de-
pendencies, it has a restricted language for representing
these dependencies, it performs only limited inferenc-
ing, and it manages objects using the host file system.
These capabilities can be stretched to represent a sur-
prisingly wide range of activities and objects, but in gen-
eral they are inadequate for process programming. In
contrast, APPL/A is based on a full conventional pro-
gramming language, it includes specialized extensions
for process programming, it provides a more abstract
model of persistent data, and it includes triggers and
a sophisticated model of constraints and transactions.
It is intended to represent and support a wide range of
relationships, and to coordinate both manual and auto-
mated activities that may involve multi-step inferencing
and concurrency by multiple tools and developers.

The PMDB+ prototype project [28] was an exercise
to extend the TRW Project Master Data Base [29] to
include elements of process modeling and enaction. The
PMDB project attempted to model the life-cycle process
by representing its objects and relationships; it did not
include activities. The PMDB+ model extends the ba-
sic PMDB model to address activities using operations
that are associated with entity types. The PMDB+
prototype makes use of VBase [3], an object-oriented
system, to support its entity-relationship model. VBase
supports notions of relationships and triggers, but these
are very different from their counterparts in APPL/A.
VBase also has only a rudimentary transaction model
and does not support constraints. A detailed compari-
son of VBase and APPL/A is found in [35].

23

A number of other systems have been developed
recently to support software development, including
the representation and enactment of software processes.
These include (among others) Melmac [14], OS/O [43],
and Oikos [2]. Each of these makes a significant con-
tribution to change management in software processes
by providing some formal representation of the software
process and supporting the automatic enactment of that
representation. They differ with respect to modeling
formalisms and to specific features designed to support
change.

Melmac provides a three-level approach to process
representation. The top level is a C-oriented object and
activity type definition, the middle level is an extended,
graphical Petri-net model, known as FUNSOFT nets,
which incorporates the objects and activities defined at
the top level, and a bottom level which supports en-
actment of the FUNSOFT nets to execute or simulate
the process. APPL/A does not include any support for
graphical representations of processes, although process
visualization research is an ongoing part of the Arcadia
process. The FUNSOFT net model includes predicates
which constrain the firing of agencies in the net, but,
unlike APPL/A predicates, they do not apply directly
and independently to constrain stored objects. FUN-
SOFT nets also allow the emulation of post-activity
triggers by arcs which lead into further activities. Al-
though Melmac is built on top of a persistent object
store, the FUNSOFT net model does not seem to offer
special support for the modeling of transactions in the
software process. The FUNSOFT net model provides
special support for change management in the form of
“modification points.” These are special nodes in the
FUNSOFT net which are not completely specified at
process-invocation time. When encountered during pro-
cess execution they are elaborated dynamically, allowing
the process to adapt itself to prevailing circumstances.
Support for unelaborated activities in APPL/A pro-
grams can be modeled by stubs which call out to a user
(or other process) which can then execute a separate
program to “fill in” the unelaborated activity. APPL/A
provides a related kind of flexibility through the ability
to dynamically allocate tasks, triggers, and relations.

0OS/0 is a prototype object-management system
based on the concept of object-oriented attribute gram-
mars (OOAGs), which provide several extensions of con-
ventional attribute grammars. In the OOAG model,
trees are viewed as distinguished objects which respond
to messages. FEach object definition may have both
a static and dynamic part which govern the compu-
tation of its attributes. Attributes may have persis-
tent but modifiable values over multiple computations
of the tree. The OOAG model has several features
that are specifically designed to support management
of the change of object class definitions. An object

class may have several alternative definitions, any one
of which may be in effect. An object in such a class
may be sent a “transform” message to change the ef-
fective definition from one to another alternative, Ad-
ditionally, a class may be sent a “change” message to
add or delete alternative definitions or to modify an ex-
isting definition. OS/O also supports persistent meta-
objects which maintain version histories for versionable
objects. APPL/A does not have any automatic version-
ing system. We have regarded versioning as a process-
dependent activity, and so we have tried to provide con-
structs which allow support for versioning to be pro-
grammed. APPL/A can support an effect like that of
alternative class definitions for objects in that relations
can be used to associate object identifiers to alternative
sets of attributes which are derived in different ways.
The consistency of these different views of an object (as
well as other kinds of consistency) can be maintained
by enforced predicates, a mechanism which is not avail-
able in OS/0. Additionally, OS/0O, like Melmac, does
not provide special support for the modeling of trans-
actions in software processes.

Oikos is an infrastructure for experimentation and
evaluation of process models. The coordination lan-
guage of Oikos is ESP, an extended distributed logic
language based on Prolog. An ESP program defines a
hierarchy of blackboards. A blackboard may contain
facts and other blackboards, and it may have attached
agents. An agent responds to facts on the blackboard to
which it is attached; an agent can also create additional
blackboards. Oikos distinguishes between processes and
environments. In a process, the structure of subpro-
cesses and use of tools is foreseen and frozen, whereas an
environment offers a set of tools and services which may
be used in an unstructured way. Where change is antic-
ipated in a process, the process may embed an environ-
ment. The APPL/A model of process and program is
based on very different conceptual elements. However,
APPL/A does include active and reactive constructs,
and it does allow the programming of processes which
are comparatively constrained or unconstrained in their
pattern of control.

Sullivan and Notkin [38] propose an approach
to environment integration which supports flexibility
through component independence. Their approach is
based on mediators, which localize relationships, and a
general event mechanism. The typical role of a media-
tor is to maintain a relationship between separate com-
ponents; the mediator can respond to events that sig-
nal changes in those components by taking actions that
maintain the intended relationship. This approach sep-
arates components from the relationships in which they
participate and allows independent access to the compo-
nents. New relationships can be added without affect-
ing existing components or other mediators. Triggers in

24

APPL/A are analogous to mediators, and APPL/A ad-
mits a similar approach to system integration and evo-
lution. The event mechanism proposed by Sullivan and
Notkin is more general than that in APPL/A. APPL/A
provides an additional mechanism, however, in the form
of predicates. These can be used to state explicit condi-
tions that must hold between relations and that might
be maintained by triggers (or some other mechanism).
The system of Sullivan and Notkin does not include any
way to state the conditions that relations are to satisfy
or that mediators are to enforce.

AP5 [12, 13] has many features in common with
APPL/A. Tt is an extension of common lisp that in-
cludes relations and rule-based constraints and triggers.
These features enable AP5 to be used to model soft-
ware processes, including managing change, in much
the same way as APPL/A. However, AP5 is primar-
ily a single-user system. It relies on virtual memory
for data storage, and it provides only a simple trans-
action mechanism. AP5 also uses state-driven triggers,
whereas APPL/A uses event-driven triggers.

Marvel [21, 20] is a rule-based kernel for software
development environments. It provides many capabil-
ities that support change management. Software pro-
cesses are modeled by rules that encapsulate develop-
ment activities and assist human users. The kinds of
assistance available range from automation to consis-
tency maintenance. The data model comprises a hierar-
chy of object classes with multiple inheritance. Objects
may have attributes linking them to other objects (thus
representing relationships between objects). A special
goal of the project is to support a variety of modes of
interaction between developers on large-scale projects.

6 Status and Future Work

APPL/A is defined as an extension to Ada [39]. The
APPL/A definition includes a formal syntax and En-
glish semantics with examples in a style similar to that
of the Ada manual [45]. An automatic APPL/A to
Ada translator, called “APT”, exists in prototype form.
It is a modification of a partial Ada compiler which
is a component of existing Arcadia [44] Ada language
technology. For historical and technical reasons the
language translated by APT is a subset of the full
APPL/A language. APT can automatically translate
relation specifications, relation bodies, triggers (with
global event signaling) and predicates. APT can recog-
nize the transaction-like statements, but it cannot trans-
late them because of lack of run-time support capabil-
ities. Support is also lacking for predicate enforcement
and non-global event signaling (a feature not described
above). However, we have developed designs for the im-
plementation of all of these features, and the automatic
translation of the full language is feasible. A practi-

cal problem at this time is that most of the features
which are not yet translated depend on the ability to
trace the execution of a (concurrent) program through
its call stack. This information is difficult to obtain from
current Ada compilers (without being able to modify
them), and the development of an alternative approach,
while possible, is costly. Future work will continue the
evolution and implementation of APPL/A.

We recognize that for many users it is a burden to
construct the bodies of relations. In light of that, we
are designing default implementations for APPL/A re-
lations based on some existing database systems. These
database systems provide persistence and some form of
data model into which APPL/A relations are mapped.
Our original process programs used Cactis [19]. Current
work is making use of Triton [17], a persistent object sys-
tem built on top of the EXODUS [7] storage manager.
It is now possible to generate default bodies, which use
Triton, for simple stored relations (i.e. relations lack-
ing derived attributes). We also plan to support default
implementations for relations with derived attributes.

A goal for the APPL/A project is to code process
programs covering a complete software life cycle. At
least partial code exists to support requirements (the
REBUS program) and design (DEBUS). REBUS is an
executable system which supports the specification of
software requirements in a functional hierarchy. REBUS
stores data about requirements in APPL/A relations
which are constrained by APPL/A predicates and main-
tained by APPL/A triggers. REBUS is translated by
APT and makes use of Triton. DEBUS, a design-process
support system, is under construction in APPL/A. DE-
BUS is based on the Yourdon Design methodology [47].
An early version of APPL/A was also used to code
DataFlowsaRelay, which integrates dataflow and fault-
based testing and analysis [30]. REBUS and DE-
BUS were also initially coded using early versions of
APPL/A. In the case of REBUS, the APPL/A code was
translated by hand into an executable Ada program.
The early version of REBUS also included extensions
based on RSL/REVS [1, 5] which will be incorporated
into the current version. The experience gained with
the earlier process programs contributed greatly to our
understanding of PPL requirements. That experience
enabled us to refine APPL/A in significant ways, result-
ing in the definition described here. We have also used
APPL/A to program a solution to the process-modeling
problem presented in conjunction with the Sixth Inter-
national Software Process Workshop (ISPWG6). Ongo-
ing and future work will include the development of pro-
grams for additional parts of the software life-cycle, such
as coding and project management.

Change is pervasive in the programs mentioned
above, and many of the programs have a significant
component which explicitly addresses change manage-

25

ment in some form. For example, REBUS supports
and coordinates the development and modification of
a requirements specification by a team of developers,
and the ISPW6 problem treats changes to unit design,
code, and test plans following a change to requirements.
Consequently, the coding of these programs in APPL/A
has allowed us to experiment with and evolve the con-
structs in the language and to verify that they do gen-
erally support the management of change in software-
process programs. The coding of these processes has
also brought to light several additional issues related
to change management, for example, the capturing and
use of information about change to processes and prod-
ucts (process reification and reflection), the design of
process programs for ease of change to processes, and
issues of language, environment, and process support
for transitions between processes. As we develop addi-
tional process programs we plan to address these issues
in greater depth, and we hope and expect to uncover
further issues related to management of change in soft-
ware development.

7 Acknowledgements

This research was supported by the Defense Advanced
Research Projects Agency, through DARPA Order
#6100, Program Code 7E20, which was funded through
grant #CCR-8705162 from the National Science Foun-
dation. Support was also provided by the Naval Ocean
Systems Center and the Office of Naval Technology. The
authors wish to thank Deborah Baker, Roger King, She-
hab Gamalel-din, Mark Maybee, and Xiping Song for
their advice. The comments of the members of the Ar-
cadia consortium were also important in clarifying the
issues surrounding APPL/A.

References

[1] Mack W. Alford. A requirements engineering
methodology for real-time processing requirements.
IEEE Trans. on Software Engineering, SE-3(1):60
— 69, January 1977.

V. Ambriola, P. Ciancarini, and Montangero. Soft-
ware process enactment in oikos. In Proc. of the
Fourth ACM SIGSOFT Symposium on Practical
Software Development Environments, pages 183—
192, 1990. Irvine, California.

Timothy Andrews and Craig Harris. Combin-
ing language and database advances in an object-
oriented development environment. In OOPSLA
87 Conf. Proc., 1987.

Malcolm P. Atkinson, Peter J. Bailey, K. J. Chis-
holm, W. P. Cockshott, and Ronald Morrison. An

[9]

[10]

(11]

(12]

(13]

[14]

approach to persistent programming. The Com-
puter Journal, 26(4):360-365, 1983.

T. E. Bell, D. C. Bixler, and M. E. Dyer. An ex-
tendable approach to computer-aided software re-
quirements engineering. IEEFE Trans. on Software
Engineering, SE-3(1):49 — 59, January 1977.

Michael J. Carey, David J. DeWitt, Daniel Frank,
Goetz Graefe, M. Muralikrishna, Joel E. Richard-
son, and Eugene J. Shekita. The architecture of
the exodus extensible dbms. In Proc. of the In-
ternational Workshop on Object Oriented Database
Systems, pages 52 — 65, 1986.

Michael J. Carey, David J. DeWitt, Daniel Frank,
Goetz Graefe, Joel E. Richardson, Eugene J. She-
kita, and M Muralikrishna. The architecture of
the EXODUS extensible DBMS: a preliminary re-
port. Technical Report Computer Sciences Techni-
cal Report #644, University of Wisconsin, Madi-
son, Computer Sciences Department, May 1986.

Thomas E. Cheatham, Jr. The E-L software devel-
opment database — an experiment in extensibility.
In Proc. 1989 ACM SIGMOD Workshop on Soft-
ware CAD Databases, pages 21 — 25, 1989. Napa,
California, February.

Thomas E. Cheatham, Jr. Process programming
and process models. In 5th International Software
Process Workshop — Preprints, October 1989. Ken-
nebunkport, Maine, October, 1989.

Geoffrey M. Clemm and Leon J. Osterweil. A mech-
anism for environment integration. ACM Trans-
actions on Programming Languages and Systems,
12(1):1-25, January 1990.

E. F. Codd. A relational model for large shared
data banks. Comm. ACM, 13(6):377-387, 1970.

Don Cohen. AP5 Manual. Univ. of Southern Cali-
fornia, Information Sciences Institute, March 1988.

Donald Cohen. Compiling complex database tran-
sition triggers. In Proceedings ACM SIGMOD 89
International Conf. on Management of Data, pages
225 — 234, 1989.

Wolfgang Deiters and Volker Gruhn. Managing
software processes in the environment melmac. In
Proc. of the Fourth ACM SIGSOFT Symposium
on Practical Software Development Environments,
pages 193-205, 1990. Irvine, California.

Stuart I. Feldman. Make — a program for main-
taining computer programs. Software — Practice
and Experience, 9:255 — 265, 1979.

26

[16]

(19]

(25]

[26]

Shehab A. Gamalel-din and Leon J. Osterweil. New
perspectives on software maintenance processes. In
Proceedings of the Conference on Software Mainte-
nance, pages 14 — 22. IEEE, October 1988.

Dennis Heimbigner. Triton reference manual. Tech-
nical Report CU-CS-483-90, University of Col-
orado, Department of Computer Science, Boulder,
Colorado 80309, August 1990.

Dennis Heimbigner and Steven Krane. A
graph transform model for configuration manage-
ment environments. In Proc. Third ACM SIG-
SOFT/SIGPLAN Sympostum on Practical Soft-
ware Development Environments, pages 216 — 225,
November 1988. Special issue of SIGPLAN Notices,
24(2), February, 1989.

Scott E. Hudson and Roger King. The Cactis
project: Database support for software environ-
ments. [EEE Trans. on Software Engineering,
14(6):709-719, June 1988.

Gail E. Kaiser. Rule-based modeling of the soft-
ware development process. In Proc. {th Interna-
tional Software Process Workshop, October 1988.
Published in ACM SIGSOFT Software Engineer-
ing Notes, v. 14, n. 4, June, 1989.

Gail E. Kaiser and Peter H. Feiler. An architecture
for intelligent assistance in software development.
In Proc. Ninth International Conference on Soft-
ware Engineering, pages 180 — 188, 1987.

Lech Krzanik. Enactable models for quantitative
evolutionary software processes. In Colin Tully,
editor, Proc. Jth International Software Process
Workshop, pages 103 — 110, Moretonhampstead,
Devon, U.K., May, 1988. ACM SIGSOFT Software
Engineering Notes, v. 14, n. 4, June 1989.

Yoshihiro Matsumoto, Kiyoshi Agusa, and Tsuneo
Ajisaka. A software process model based on unit
workload network. In 5th International Software
Process Workshop — Preprints, October 1989. Ken-
nebunkport, Maine, October, 1989.

J. Eliot B. Moss. Nested Transactions: An Ap-
proach to Reliable Distributed Computing. PhD

thesis, Massachusetts Institute of Technology, May
1981.

K. M. Olender. Cecil/Cesar: Specification and
Static Evaluation of Sequencing Constraints. PhD
thesis, University of Colorado, 1988.

Leon J. Osterweil. Using data flow tools in soft-
ware engineering. In Muchnick and Jones, editors,
Progarm Flow Analysis: Theory and Application.
Prentice-Hall, Englewood Cliffs, N. J., 1981.

[27]

(28]

(29]

(30]

[35]

[36]

Leon J. Osterweil. Software processes are software
too. In Proc. Ninth International Conference on
Software Engineering, 1987.

Maria H. Pendeo. Acquiring experiences with exe-
cutable process models. In §th International Soft-
ware Process Workshop — Preprints, October 1989.
Kennebunkport, Maine, October, 1989.

Maria H. Penedo. Prototyping a project master
database for software engineering environments. In
Proc. ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Develop-
ment Environments, pages 1-11. ACM, 1986.

Debra J. Richardson, Stephanie Leif Aha, and
Leon J. Osterweil. Integrating testing techniques
through process programming. In Testing, Analy-
sis, and Verification (3), pages 219-228, Key West,
December 1989. SIGSOFT.

Joel E. Richardson and Michael J. Carey. Program-
ming constructs for database system implementa-
tion in EXODUS. In Proc. ACM SIGMOD Conf.,
pages 208-219, 1987.

Mark J. Rochkind. The source code control system.
IEEE Trans. on Software Engineering, SE-1:364 —
370, December 1975.

Lawrence A. Rowe and Michael R. Stonebraker.
The POSTGRES data model. In Proc. of the
Thirteenth International Conf. on Very Large Data
Bases, pages 83 — 96, 1987.

Craig Schaffert, Topher Cooper, Bruce Bullis, Mike
Kilian, and Carrie Wilpolt. An introduction to
Trellis/Owl. In OOPSLA ’86 Conf. Proc., pages
9-16, 1986. Available as ACM SIGPLAN Notices
21, 11, November 1986.

Christine Shu. Experience with using VBase
and APPL/A for process modeling and program-
ming. Arcadia Document Arcadia-TRW-89-021,
TRW Corp., Redondo Beach, California, January
1990.

John M. Smith, Steve Fox, and Terry Landers.
Reference manual for ADAPLEX. Technical Re-
port CCA-83-08, Computer Corporation of Amer-
ica, May 1981.

Michael Stonebraker and Lawrence A. Rowe. The
design of POSTGRES. In Proc. of the ACM SIG-
MOD International Conf. on the Management of
Data, pages 340 — 355, 1986.

27

[38]

(40]

(41]

[42]

[44]

Kevin J. Sullivan and David Notkin. Reconciling
environment integration and component indepen-
dence. In Proc. of the Fourth ACM SIGSOFT Sym-
postum on Practical Software Development Envi-
ronments, pages 22-33, 1990. Irvine, California.

Stanley M. Sutton, Jr. APPL/A: A Prototype Lan-
guage for Software-Process Programming. PhD the-
sis, University of Colorado, August 1990.

Stanley M. Sutton, Jr. A flexible consistency model
for persistent data in software-process program-
ming languages. In Alan Dearle, Gail M. Shaw, and
Stanley B. Zdonik, editors, Implementing Persis-
tent Object Bases — Principles and Practice, pages
305-318. Morgan Kaufman, 1991.

Stanley M. Sutton, Jr., Dennis Heimbigner, and
Leon J. Osterweil. APPL/A: A prototype language
for software process programming. Technical Re-
port CU-CS-448-89, University of Colorado, De-
partment of Computer Science, Boulder, Colorado
80309, October 1989.

Stanley M. Sutton, Jr., Dennis Heimbigner, and
Leon J. Osterweil. Language constructs for man-
aging change in process-centered environments. In
Proc. of the Fourth ACM SIGSOFT Symposium
on Practical Software Development Environments,
pages 206-217,-1990. Irvine, California.

Lichao Tan, Yoichi Shinoda, and Taku-
ya Katayama. Coping with changes in an object
management system based on attribute grammars.
In Proc. of the Fourth ACM SIGSOFT Symposium
on Practical Software Development Environments,
pages 56-65, 1990. Irvine, California.

Richard N. Taylor, Frank C. Belz, Lori A. Clarke,
Leon J. Osterweil, Richard W. Selby, J. C. Wile-
den, Alexander Wolf, and Michal Young. Founda-
tions for the Arcadia environment architecture. In
Proc. ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Develop-

ment Environments, pages 1 — 13, ACM, November
1988.

United States Department of Defense. Reference
Manual for the Ada Programming Language, 1983.
ANSI/MIL-STD-1815A-1983.

Alexander L. Wolf, Lori A. Clarke, and Jack C.
Wileden. The adapic toolset: Supporting interface
control and analysis throughout the software de-

velopment process. IFEE Trans. on Software En-
gineering, 15(3):250-263, March 1989.

Edward Yourdon. Techniques of Program Structure
and Design. Prentice Hall, 1975.

